12 resultados para MOLECULAR MARKERS

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, 123 almond (Prunus dulcis (Mill.) D. A. Webb) trees identified among traditional orchards in the Algarve region and 53 trees of the local field collection managed by the regional office of the Portuguese Ministry of Agriculture (DRAALG) were assessed using isozyme, inter- single sequence repeat and simple sequence repeat or microsatellite techniques for the evaluation of genetic diversity and genetic relatedness and identification of new accessions for the field collection. The isozyme analysis allowed the distribution of the 176 plants into 13 different classes of enzyme similarity, while the use of DNA markers increased the distribution of the analysed trees among 140 discriminating DNA patterns. Multiple cases of homonymy and synonymy were identified in the local germplasm. Some traditional varieties, such as Lourencinha, appeared to be relatively homogeneous, while other local denominations, e.g. Galamba, included diverse genotypes. Of the 13 commercial varieties analysed in this study, 11 assembled in one major cluster clearly differentiated from the majority of the local genotypes. These results reinforced the perception that the Algarve traditional germplasm constitutes an important repository of genetic diversity, eventually carrying alleles of high agricultural interest such as the recently identified Phomopsis resistance in the traditional variety Barrinho Grado.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed. Methods: 46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA) were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity. Results: Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95). With breed information, 30 cows and three bulls were identified (q > 0.95) that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10) relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P < 0.001). The four Algarvia bulls had Y-haplotypes H6Y2 and H11Y2, common in Portuguese cattle. The mtDNA composition showed prevalence of T3 matrilines and presence of the African-derived T1a haplogroup. This analysis confirmed the genetic proximity of Algarvia and Garvonesa breeds (Fst = 0.028, P > 0.05). Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0.50) to the overall gene diversity of Portuguese cattle. Algarvia and seven other autochthonous breeds made no contribution to the overall allelic diversity. Conclusions: Molecular analyses complemented previous morphological findings to identify 33 animals that can be considered remnants of the Algarvia breed. Results of genetic diversity and conservation analyses provide objective information to establish a management program to reconstitute the Algarvia breed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bubo bubo is the largest owl in the world, showing a wide geographical distribution throughout the Palaearctic region. It underwent a demographic decline in many European countries during the last century and was considered “vulnerable” (Annex II of the CITES). Nowadays, it is classified as “Least Concern” according to IUCN. Despite its ecological importance and conservation status, few polymorphic molecular markers are available to study its diversity and population genetics. We report on the isolation and development of 10 new microsatellites for the Eagle owl, B. bubo. All loci (10 tetra-nucleotide) are characterized by high polymorphism levels. Number of alleles ranged from 5 to 13 and expected heterozygosity varied from 0.733 to 0.840. These microsatellites would be very useful to assess the genetic diversity, connectivity patterns and parentage of B. bubo. This information will allow to establish new conservation strategies and improve the management of the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Especialização em Biotecnologia Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Themarine environment seems, at first sight, to be a homogeneousmediumlacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected. Weaimto elucidate the role of oceanographical factors ingenerating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution ofmarine biodiversity but also formanagement and conservation of marine life. For this proposal,we investigate the genetic structure and connectivity between continental and insular populations ofwhite seabreamin North East Atlantic (NEA) and Mediterranean Sea (MS) aswell as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers. Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream(adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation. Mediterranean islands show similar genetic diversity to the neighbouring continental samples and nonsignificant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite Springer’s (1964) revision of the sharpnose sharks (genus Rhizoprionodon), the taxonomic definition and ranges of Rhizoprionodon in the western Atlantic Ocean remains problematic. In particular, the distinction between Rhizoprionodon terraenovae and R. porosus, and the occurrence of R. terraenovae in South American waters are unresolved issues involving common and ecologically important species in need of fishery management in Caribbean and southwest Atlantic waters. In recent years, molecular markers have been used as efficient tools for the detection of cryptic species and to address controversial taxonomic issues. In this study 415 samples of the genus Rhizoprionodon captured in the western Atlantic Ocean from Florida to southern Brazil were examined for sequences of the COI gene and the D-loop and evaluated for nucleotide differences. The results on nucleotide composition, AMOVA tests, and relationship distances using Bayesian-likelihood method and haplotypes network, corroborates Springer’s (1964) morphometric and meristic finding and provide strong evidence that supports consideration of R. terraenovae and R. porosus as distinct species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gla-rich protein (GRP) is a vitamin K-dependent protein related to bone and cartilage recently described. This protein is characterized by a large number of Gla (γ-carboxyglutamic acid) residues being the protein with the highest Gla content of any known protein. It was found in a widely variety of tissues but highest levels was found in skeletal and cartilaginous tissues. This small secreted protein was also expressed and accumulated in soft tissues and it was clearly associated with calcification pathologies in the same tissues. Although the biological importance of GRP remains to be elucidated, it was suggested a physiological role in cartilage development and calcification process during vertebrate skeleton formation. Using zebrafish, an accepted model to study skeletal development, we have described two grp paralog genes, grp1 and grp2, which exhibited distinct patterns of expression, suggesting different regulatory pathways for each gene. Gene synteny analysis showed that grp2 gene is more closely related to tetrapod grp, although grp1 gene was proposed to be the vertebrate ortholog by sequence comparison. In addition, we identified a functional promoter of grp2 gene and using a functional approach we confirmed the involvement of transcription factors from Sox family (Sox9b and Sox10) in the regulation of grp2 expression. In an effort to provide more information about the function of grp isoforms, we generated two zebrafish transgenic lines capable to overexpress conditionally grp genes and possible roles in the skeleton development were studied. To better understand GRP function a mammalian system was used and the analysis of knockout mice showed that GRP is involved in chondrocyte maturation and the absence of GRP is associated to proteoglycans loss in calcified articular cartilage. In addition, we detected differences in chondrogenesis markers in articular chondrocyte primary culture. Overall, our data suggest a main role for GRP on chondrocyte differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of genes involved in signaling and regulatory pathways, and matrix formation is paramount to the better understanding of the complex mechanisms of bone formation and mineralization, and critical to the successful development of therapies for human skeletal disorders. To achieve this objective, in vitro cell systems derived from skeletal tissues and able to mineralize their extracellular matrix have been used to identify genes differentially expressed during mineralization and possibly new markers of bone and cartilage homeostasis. Using cell systems of fish origin and techniques such as suppression subtractive hybridization and microarray hybridization, three genes never associated with mechanisms of calcification were identified: the calcium binding protein S100-like, the short-chain dehydrogenase/reductase sdr-like and the betaine homocysteine S-methyltransferase bhmt3. Analysis of the spatial-temporal expression of these 3 genes by qPCR and in situ hybridization revealed: (1) the up-regulation of sdr-like transcript during in vitro mineralization of gilthead seabream cell lines and its specificity for calcified tissues and differentiating osteoblasts; (2) the up-regulation of S100-like and the down-regulation of bhmt3 during in vitro mineralization and the central role of both genes in cartilaginous tissues undergoing endo/perichondral mineralization in juvenile fish. While expression of S100-like and bhmt3 was restricted to calcified tissues, sdr-like transcript was also detected in soft tissues, in particular in tissues of the gastrointestinal tract. Functional analysis of gene promoters revealed the transcriptional regulation of the 3 genes by known regulators of osteoblast and chondrocyte differentiation/mineralization: RUNX2 and RAR (sdr-like), ETS1 (s100-like; bhmt3), SP1 and MEF2c (bhmt3). The evolutionary relationship of the different orthologs and paralogs identified within the scope of this work was also inferred from taxonomic and phylogenetic analyses and revealed novel protein subfamilies (S100-like and Sdr-like) and the explosive diversity of Bhmt family in particular fish groups (Neoteleostei). Altogether our results contribute with new data on SDR, S100 and BHMT proteins, evidencing for the first time the role for these three proteins in mechanisms of mineralization in fish and emphasized their potential as markers of mineralizing cartilage and bone in developing fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the genetic variability among 130 accessions of the Portuguese germplasm collection of Cucurbita pepo L. maintained at the Banco Portugues de Germoplasma Vegetal was assessed using AFLP (amplified fragment length polymorphism) and RAPD (random amplified polymorphic DNA) techniques for the identification of a genetically diverse core group of accessions for field phenotypic analysis. The surprisingly completely different molecular patterns exhibited by multiple accessions was later confirmed in the distribution of the putative C. pepo plants into two clusters drastically separated at a very low level of genetic similarity (DICE coefficient = 0.37). Additional analyses with RAPD and ISSR (inter single sequence repeat) markers and the introduction of standard genotypes of C. maxima L. and C. moschata L. into the analyses allowed the identification of multiple accessions of the last species wrongly included in the C. pepo collection. This study is a good example of the usefulness of DNA markers in the establishment and management of plant germplasm collections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015